Estimation of Generalized Pareto Distribution Parameters in Traffic Accident Loss Data Modeling
نویسندگان
چکیده
The problem of traffic accidents in Indonesia has a high level risk. In an effort to minimize losses due accidents, it is necessary study the data and characteristics identify these events as extreme events. This was conducted find out how estimate shape scale parameters using Maximum Likelihood Estimation (MLE), explore on accident Indonesia. method used analyze value Extreme Value Theory. One approach values Peaks Over Threshold which follows Generalized Pareto Distribution (GPD). Traffic loss divided into three types based cause, namely driver negligence, vehicle quality, other external factors period (2008-2017). obtained through MLE then solved by Newton Raphson because produces equations that are not closed form. resulted GPD distribution parameter, well confidence interval (1-α) 100% with 5%. addition, concluded from estimation have same for each type risk analyzed, but different parameter values. Based estimation, expected be useful related parties analyzing number next consider steps can taken reduce accidents.
منابع مشابه
modeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Evaluation of productivity loss in traffic accident victims
Background & Aim: Traffic accidents are the leading cause of death in the world, which brings great cost to the economy. So, this study aimed to determine the loss of productivity in traffic accident victims admitted to hospitals in Mashhad University of Medical Sciences in 2018. Methods: This cross-sectional study was conducted on 551 injured persons selected randomly. For productivity loss e...
متن کاملEstimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data
This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...
متن کاملBias - Corrected Maximum Likelihood Estimation of the Parameters of the Generalized Pareto Distribution
We derive analytic expressions for the biases, to O(n), of the maximum likelihood estimators of the parameters of the generalized Pareto distribution. Using these expressions to bias-correct the estimators in a selective manner is found to be extremely effective in terms of bias reduction, and can also result in a small reduction in relative mean squared error. In terms of remaining relative bi...
متن کاملBivariate generalized Pareto distribution in practice: models and estimation
There is often interest in understanding how the extremely high/low values of different processes are related to each other. One possible way to tackle this problem is via an asymptotic approach, which involves fitting the multivariate generalized Pareto distribution (MGPD) to data that exceed a suitably high threshold. There are two possible definitions of the MGPD. The first, which has classi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Global Operations Research
سال: 2022
ISSN: ['2723-1747', '2722-1016']
DOI: https://doi.org/10.47194/ijgor.v3i2.165